- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断直线与圆的位置关系
- 由直线与圆的位置关系求参数
- 求直线与圆交点的坐标
- + 直线与圆相交的性质——韦达定理及应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知圆
的圆心在直线
:
上,与直线
:
相切,且截直线
:
所得弦长为6
(Ⅰ)求圆
的方程
(Ⅱ)过点
是否存在直线
,使以
被圆
截得弦
为直径的圆经过原点?若存在,写出直线的方程;若不存在,说明理由.







(Ⅰ)求圆

(Ⅱ)过点





已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.
(1)求k的取值范围;
(2)若
=12,其中O为坐标原点,求|MN|.
(1)求k的取值范围;
(2)若

已知方程
的曲线是圆
.
(1)求实数
的取值范围;
(2)若直线
与圆
相交于
、
两点,且
(
为坐标原点),求实数
的值;
(3)当
时,设
为直线
上的动点,过
作圆
的两条切线
、
,切点分别为
、
,求四边形
面积的最小值.


(1)求实数

(2)若直线







(3)当










若直线x﹣my+m=0与圆(x﹣1)2+y2=1相交,且两个交点位于坐标平面上不同的象限,则m的取值范围是( )
A.(0,1) | B.(0,2) | C.(﹣1,0) | D.(﹣2,0) |
平面直角坐标系中,圆
方程为
,点
,直线
过点

(1)如图1,直线的斜率为
,直线
交圆
于
不同两点,求弦
的长度;
(2)动点
在圆
上作圆周运动,线段
的中点为点
,求点
的轨迹方程;
(3)在(1)中,如图2,过点
作直线
,交圆
于
不同两点,证明:
.






(1)如图1,直线的斜率为





(2)动点





(3)在(1)中,如图2,过点




