- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 直线的方向向量
- 平面的法向量
- + 空间位置关系的向量证明
- 空间距离的向量求法
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.
(1)求证:PB⊥DM;
(2)求CD与平面ADMN所成角的正弦值.

(1)求证:PB⊥DM;
(2)求CD与平面ADMN所成角的正弦值.

如图,在多面体
中,平面
平面
.四边形
为正方形,四边形
为梯形,且
,
是边长为1的等边三角形,M为线段
中点,
.

(1)求证:
;
(2)求直线
与平面
所成角的正弦值;
(3)线段
上是否存在点N,使得直线
平面
?若存在,求
的值;若不存在,请说明理由.










(1)求证:

(2)求直线


(3)线段




空间直角坐标中A(1,2,3),B(-1,0,5),C(3,0,4),D(4,1,3),则直线AB与CD的位置关系是( )
A.平行 | B.垂直 |
C.相交但不垂直 | D.无法确定 |
如图,正方体的棱长为1,CB′∩BC′=O,

求:(1)AO与A′C′所成角的度数;
(2)AO与平面ABCD所成角的正切值;
(3)证明平面AOB与平面AOC垂直.

求:(1)AO与A′C′所成角的度数;
(2)AO与平面ABCD所成角的正切值;
(3)证明平面AOB与平面AOC垂直.
如图
,在高为
的等腰梯形
中,
,且
,
,将它沿对称轴
折起,使平面
平面
,如图
,点
为
的中点,点
在线段
上(不同于
,
两点),连接
并延长至点
,使
.

(1)证明:
平面
;
(2)若
,求二面角
的余弦值.




















(1)证明:


(2)若

