- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 直线的方向向量
- 平面的法向量
- + 空间位置关系的向量证明
- 空间距离的向量求法
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,四棱锥S﹣ABCD中,四边形ABCD为平行四边形,BA⊥AC,SA⊥AD,SC⊥CD.
(Ⅰ)求证:AC⊥SB;
(Ⅱ)若AB=AC=SA=3,E为线段BC的中点,F为线段SB上靠近B的三等分点,求直线SC与平面AEF所成角的正弦值.
(Ⅰ)求证:AC⊥SB;
(Ⅱ)若AB=AC=SA=3,E为线段BC的中点,F为线段SB上靠近B的三等分点,求直线SC与平面AEF所成角的正弦值.

如图,在多面体
中,平面
平面
.四边形
为正方形,四边形
为梯形,且
,
,
,
.

(1)求证:
;
(2)求直线
与平面
所成角的正弦值;
(3)线段
上是否存在点
,使得直线
平面
若存在,求
的值;若不存在,请说明理由.










(1)求证:

(2)求直线


(3)线段





如图为一正方体的平面展开图,在这个正方体中,有以下结论:①
,②CF与EN所成的角为
,③
//MN,④二面角
的大小为
,其中正确的个数是( )







A.1 | B.2 | C.3 | D.4 |
如图,三棱柱
的底面是边长为2的正三角形,且侧棱垂直于底面,侧棱长是,D是AC的中点.

(1)求证:
平面
;
(2)求二面角
的大小;
(3)求直线
与平面
所成的角的正弦值.


(1)求证:


(2)求二面角

(3)求直线


如图,在四棱锥
中,
平面
,
,
,
,
,
,
,
为
的中点.
(1)求证:
平面
;
(2)线段
上是否存在一点
,满足
?若存在,试求出此时三棱锥
的体积;若不存在,请说明理由.











(1)求证:


(2)线段





如图1,
,
,过动点A作
,垂足D在线段BC上且异于点B,连接AB,沿
将△
折起,使
(如图2所示).

(1)当
的长为多少时,三棱锥
的体积最大;
(2)当三棱锥
的体积最大时,设点
,
分别为棱
,
的中点,试在棱
上确定一点
,使得
,并求
与平面
所成角的大小.







(1)当


(2)当三棱锥










