- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 直线的方向向量
- 平面的法向量
- + 空间位置关系的向量证明
- 空间距离的向量求法
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,在四棱锥
中,底面四边形ABCD是菱形,
是边长为2的等边三角形,
,
.

Ⅰ
求证:
底面ABCD;
Ⅱ
求直线CP与平面BDF所成角的大小;
Ⅲ
在线段PB上是否存在一点M,使得
平面BDF?如果存在,求
的值,如果不存在,请说明理由.














四棱锥
中,底面
是边长为
的菱形,侧面
底面
,
60°,
,
是
中点,点
在侧棱
上.

(1)求证:
;
(2)是否存在
,使平面
平面
?若存在,求出,若不存在,说明理由.
(3)是否存在
,使
平面
?若存在,求出.若不存在,说明理由.












(1)求证:

(2)是否存在




(3)是否存在



如图,在棱长为1的正方体
中,点E是棱AB上的动点.
(1)求证:
;
(2)若直线
与平面
所成的角是45
,请你确定点E的位置,并证明你的结论.

(1)求证:

(2)若直线




在棱长为
的正方体
中,O是AC的中点,E是线段D1O上一点,且D1E=λEO.
(1)若λ=1,求异面直线DE与CD1所成角的余弦值;
(2)若平面CDE⊥平面CD1O,求λ的值.


(1)若λ=1,求异面直线DE与CD1所成角的余弦值;
(2)若平面CDE⊥平面CD1O,求λ的值.

如图,在四棱锥
中,平面
平面
,
,
,
,
,
,
.

(1)求直线
与平面
所成角的正弦值.
(2)在棱
上是否存在点
,使得
平面
?若存在,求
的值;若不存在,说明理由.










(1)求直线


(2)在棱





已知四棱锥P-ABCD的底面为等腰梯形, AB∥CD,AC⊥BD,垂足为H, PH是四棱锥的高,E为AD中点,设
1)证明:PE⊥BC;
2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.

1)证明:PE⊥BC;
2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.
