刷题首页
题库
高中数学
题干
在棱长为
的正方体
中,
O
是
AC
的中点,
E
是线段
D
1
O
上一点,且
D
1
E
=λ
EO
.
(1)若λ=1,求异面直线
DE
与
CD
1
所成角的余弦值;
(2)若平面
CDE
⊥平面
CD
1
O
,求λ的值.
上一题
下一题
0.99难度 解答题 更新时间:2018-07-02 08:38:03
答案(点此获取答案解析)
同类题1
如图,四棱锥P—ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(Ⅰ)证明PA//平面BDE;
(Ⅱ)求二面角B—DE—C的平面角的余弦值;
(Ⅲ)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.
同类题2
如图,已知多面体
,
,
,
均垂直于平面
ABC
,
,
,
,
(1)证明:
平面
;
(2)求平面
与平面
所成的锐角的余弦值.
同类题3
如图1,在边长为2的菱形
中,
,
于点
,将
沿
折起到
的位置,使
,如图2.
(1)求证:
平面
;
(2)在线段
上是否存在点
,使平面
平面
?若存在,求
的值;若不存在,说明理由.
同类题4
在正方体
中,已知
、
、
、
分别是
、
、
和
的中点.
证明:(1)
,
;
(2)
平面
.
同类题5
如图,在三棱锥
P
ABC
中,
PA
⊥底面
ABC
,∠
BAC
=90°.点
D
,
E
,
N
分别为棱
PA
,
PC
,
BC
的中点,
M
是线段
AD
的中点,
PA
=
AC
=4,
AB
=2.
(1)求证:
MN
∥平面
BDE
;
(2)求二面角
的正弦值;
(3)已知点
H
在棱
PA
上,且直线
NH
与直线
BE
所成角的余弦值为
,求线段
AH
的长.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明