刷题首页
题库
高中数学
题干
已知四棱锥P-ABCD的底面为等腰梯形, AB∥CD,AC⊥BD,垂足为H, PH是四棱锥的高,E为AD中点,设
1)证明:PE⊥BC;
2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.
上一题
下一题
0.99难度 解答题 更新时间:2018-07-16 09:21:45
答案(点此获取答案解析)
同类题1
如图5,已知平行四边形ABCD和矩形ACEF所在的平面互相垂直,
,
.
(1)求证:AC⊥BF;
(2)求二面角F—BD—A的余弦值;
(3) 求点A到平面FBD的距离.
同类题2
已知
,若
则实数x=
.
同类题3
如图,在棱长为
的正方体
中,点
是棱
的中点,点
在棱
上,且满足
.
(1)求证:
;
(2)在棱
上确定一点
,使
、
、
、
四点共面,并求此时
的长.
同类题4
如图,在三棱锥
中,
底面
ABC
,
点
D
,
E
分别为棱
PA
,
PC
的中点,
M
是线段
AD
的中点,
N
是线段
BC
的中点,
,
.
Ⅰ
求证:
平面
BDE
;
Ⅱ
求直线
MN
到平面
BDE
的距离;
Ⅲ
求二面角
的大小.
同类题5
如图,在四棱锥
中,
,
,
,
,
,点
在线段
上,且
.
(Ⅰ)求证:
;
(Ⅱ)求二面角
的正弦值;
(Ⅲ)在线段
上是否存在点
,使得
,若存在,求出线段
的长,若不存在,说明理由.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明