- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间直角坐标系
- 空间向量及其运算
- + 空间向量的应用
- 直线的方向向量
- 平面的法向量
- 空间位置关系的向量证明
- 空间距离的向量求法
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在三棱锥
中,
,
,点
分别是
的中点,
底面
.
(1)求证:
平面
;
(2)当
时,求直线
与平面
所成角的正弦值;
(3)当
为何值时,
在平面
内的射影恰好为
的重心?







(1)求证:


(2)当



(3)当




给出下列命题:
① 直线
的方向向量为
,直线
的方向向量为
,则
与
垂直.
②直线
的方向向量为
,平面
的法向量为
,则
.
③平面
、
的法向量分别为
,
,则
.
④平面
经过三点
,
,
,向量
是平面
的法向量,则
.
其中真命题的序号是________.
① 直线






②直线





③平面





④平面







其中真命题的序号是________.
如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD=1,AB=2a(a>0),E,F分别CD、PB的中点.
(Ⅰ)求证:EF⊥平面PAB;,
(Ⅱ)当
时,求AC与平面AEF所成角的正弦值.
(Ⅰ)求证:EF⊥平面PAB;,
(Ⅱ)当


如图,四棱锥
中,底面
是平行四边形,

底面
(Ⅰ)求证:
;(Ⅱ)若
,求二面角
的余弦值;
(Ⅲ)当
时,在线段
上是否存在一点
使二面角
为
,若存在,试确定点
的位置;若不存在,请说明理由.






(Ⅰ)求证:



(Ⅲ)当







已知
是边长为
的正方形ABCD的中心,点E、F分别是AD、BC的中点,沿对角线AC把正方形ABCD折成直二面角D-AC-


A. (Ⅰ)求∠EOF的大小; (Ⅱ)求二面角E-OF-A的余弦值; (Ⅲ)求点D到面EOF的距离. |