- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间直角坐标系
- 空间向量及其运算
- + 空间向量的应用
- 直线的方向向量
- 平面的法向量
- 空间位置关系的向量证明
- 空间距离的向量求法
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在三棱柱ABC—A1B1C1中,侧棱A1A⊥底面ABC,AC=1,AA1=2,∠BAC=90°,若直线AB1与直线A1C的夹角的余弦值是
,则棱AB的长度是________.

如图:已知三棱锥
中,
面
,
,
,
为
上一点,
,
分别为
的中点.
(1)证明:
.
(2)求面
与面
所成的锐二面角的余弦值.
(3)在线段
(包括端点)上是否存在一点
,使
平面
?若存在,确定
的位置;若不存在,说明理由.










(1)证明:

(2)求面


(3)在线段






如图,在正三棱柱
中,
是
的中点,
是线段
上的动点,且
.

(1)若
,求证:
;
(2) 求二面角
的余弦值;
(3) 若直线
与平面
所成角的大小为
,求
的最大值.







(1)若


(2) 求二面角

(3) 若直线




在长方体ABCD-A1B1C1D1中,AB=2,BC=B1B=1,M、N分别是AD、DC的中点.
(1)求证:MN//A1C1;
(2)求:异面直线MN与BC1所成角的余弦值.
(1)求证:MN//A1C1;
(2)求:异面直线MN与BC1所成角的余弦值.

如图,已知矩形ABCD中,AB=1,BC=
,PA
平面ABCD,且PA=1。
(1)问BC边上是否存在点Q,使得PQ
QD?并说明理由;
(2)若边上有且只有一个点Q,使得PQ
QD,求这时二面角Q
的正切。



(1)问BC边上是否存在点Q,使得PQ

(2)若边上有且只有一个点Q,使得PQ


