- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间向量数量积的概念辨析
- 求空间向量的数量积
- + 空间向量数量积的应用
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在棱长为4的正方体ABCD﹣A1B1C1D1中,点E、F分别在棱AA1和AB上,且C1E⊥EF,则|AF|的最大值为( )


A.![]() | B.1 | C.![]() | D.2 |
平行六面体ABCDA1B1C1D1中,AB=1,AD=2,AA1=3,∠BAD=90°,∠BAA1=∠DAA1=60°,求AC1的长.

如图,在四棱柱
中,侧棱
底面
,
,
,
,
,且点
和
分别为
和
的中点

(I)求证:
平面
;
(II)求二面角
的正弦值;
(III)设
为棱
上的点,若直线
和平面
所成角的正弦值为
,求
的长。












(I)求证:


(II)求二面角

(III)设





