- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 线面垂直证明线线平行
- + 线面垂直证明线线垂直
- 线面垂直证明面面平行
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,
是半径为a的半圆,AC为直径,点E为
的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足FC⊥平面BED,FB=
a.

(1)证明:EB⊥FD;
(2)求点B到平面FED的距离.




(1)证明:EB⊥FD;
(2)求点B到平面FED的距离.
已知P是△ABC所在平面
外一点,O是点P在平面
内的射影.若P到△ABC的三个顶点的距离相等,则O是△ABC的( )


A.内心 | B.外心 | C.垂心 | D.重心 |
已知AB是圆O的直径,C,D是圆上不同两点,且CD∩AB=H,AC=AD,PA⊥圆O所在平面.
(Ⅰ)求证:PB⊥CD;
(Ⅱ)若PB=
,∠PBA=
,∠CAD=
,求H到平面PBD的距离.
(Ⅰ)求证:PB⊥CD;
(Ⅱ)若PB=




如图,在正方体ABCD-A1B1C1D1中,点O,M,N分别是线段BD,DD1,D1C1的中点,则直线OM与AC,MN的位置关系是( )
A.与AC,MN均垂直 | B.与AC垂直,与MN不垂直 | C.与AC不垂直,与MN垂直 | D.与AC,MN均不垂直 |
如图,PA⊥☉O所在的平面,AB是☉O的直径,C是☉O上的一点,AE⊥PB于E,AF⊥PC于F,给出下列结论:①BC⊥平面PAC;②AF⊥平面PCB;③EF⊥PB;④AE⊥平面PBC.其中正确命题的个数是( )


A.1 | B.2 C.3 | C.4 |
如图,四棱锥
,侧面
是边长为2的正三角形,且平面
平面
,底面
是
的菱形,
为棱
上的动点,且
.
(Ⅰ)求证:
;
(Ⅱ)试确定
的值,使得二面角
的平面角余弦值为
.









(Ⅰ)求证:

(Ⅱ)试确定



