- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 二面角的概念及辨析
- + 求二面角
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,
是圆
的直径,点
是圆
上异于
,
的点,直线
平面
,
,
分别是
,
的中点.

(Ⅰ)记平面
与平面
的交线为
,试判断直线
与平面
的位置关系,并加以证明;
(Ⅱ)设
,求二面角
大小的取值范围.













(Ⅰ)记平面





(Ⅱ)设


如图,正三角形
的边长为
,
、
、
分别为各边的中点,将△
沿
、
、
折叠,使
、
、
三点重合,构成三棱锥
.

(1)求平面
与底面
所成二面角的余弦值;
(2)设点
、
分别在
、
上,
(
为变量) ;
①当
为何值时,
为异面直线
与
的公垂线段? 请证明你的结论
②设异面直线
与
所成的角为
,异面直线
与
所成的角为
,试求
的值.














(1)求平面


(2)设点






①当




②设异面直线







如图,四棱锥
的底面
为直角梯形,
,且
,
,
,平面
底面
,
为
的中点,
为等边三角形,
是棱
上的一点,设
(
与
不重合).

(1)若
平面
,求
的值;
(2)当
时,求二面角
的大小.

















(1)若



(2)当


如图,在四棱锥
中,底面四边形
是矩形,
平面
,
分别是
的中点,
.
(1)求证:
平面
;
(2)求二面角
的大小;
(3)若
,求直线
与平面
所成角的正弦值.







(1)求证:


(2)求二面角

(3)若




如图,将正方形剪去两个底角为
的等腰三角形
和
,然后沿图中所画的线折成一个正三棱锥,这个正三棱锥侧面与底面所成的二面角的余弦值为______.



