- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 二面角的概念及辨析
- + 求二面角
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
将边长为
的正方形
沿对角线
折起,使得平面
平面
,在折起后形成的三棱锥
中,给出下列四个命题:①
;②异面直线
与
所成的角为
;③二面角
余弦值为
;④三棱锥
的体积是
.其中正确命题的序号是___________.(写出所有正确命题的序号)














已知
是底面边长为
的正四棱柱,
是
和
的交点.

(1)若正四棱柱的高与底面边长相等,求二面角
的大小(结果用反三角函数值表示);
(2)若点
到平面
的距离为
,求正四棱柱
的高.






(1)若正四棱柱的高与底面边长相等,求二面角

(2)若点




矩形ABCD中,AB=2AD=2,P为线段DC的中点,将△ADP沿AP折起,使得平面ADP⊥平面ABCP.

(1)在DC上是否存在点E使得AD∥平面PBE?若存在,求出点E的位置;若不存在,请说明理由.
(2)求二面角P﹣AD﹣B的余弦值

(1)在DC上是否存在点E使得AD∥平面PBE?若存在,求出点E的位置;若不存在,请说明理由.
(2)求二面角P﹣AD﹣B的余弦值
已知四棱锥
的底面是正方形,侧棱长均相等,E是线段
上的点(不含端点),设直线
与
所成的角为
,直线
与平面
所成的角为
,二面角
的平面角为
,则( )












A.![]() | B.![]() |
C.![]() | D.![]() |
如图,等腰梯形
中,
,
,
,取
中点
,连接
,把三角形
沿
折起,使得点
在底面
上的射影落在
上,设
为
的中点.

(1)求证:
平面
;
(2)求二面角
的余弦值.















(1)求证:


(2)求二面角

如图,将一副三角板拼接,使它们有公共边BC,且使两个三角形所在的平面互相垂直,若
∠BAC=90°,AB=AC,∠CBD=90°,∠BDC=60°,BC=6.

⑴ 求证:平面
平面ACD;
⑵ 求二面角
的平面角的正切值;
⑶ 设过直线AD且与BC平行的平面为
,求点B到平面
的距离.
∠BAC=90°,AB=AC,∠CBD=90°,∠BDC=60°,BC=6.

⑴ 求证:平面

⑵ 求二面角

⑶ 设过直线AD且与BC平行的平面为

