- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 二面角的概念及辨析
- + 求二面角
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,三棱柱
中,
平面
,
,
,以
,
为邻边作平行四边形
,连接
,
.

(1)求证:
平面
;
(2)若二面角
为
.
①求证:平面
平面
;
②求直线
与平面
所成角的正切值.











(1)求证:


(2)若二面角


①求证:平面


②求直线


老王有一块矩形旧铁皮
,其中
,
,他想充分利用这块铁皮制作一个容器,他有两个设想:设想1是沿矩形的对角线
把
折起,使
移到
点,且
在平面
上的射影
恰好在
上,再利用新购铁皮缝制其余两个面得到一个三棱锥
;设想2是利用旧铁皮做侧面,新购铁皮做底面,缝制一个高为
,侧面展开图恰为矩形
的圆柱体;

(1)求设想1得到的三棱锥
中二面角
的大小;
(2)不考虑其他因素,老王的设想1和设想2分别得到的几何体哪个容积更大?说明理由.















(1)求设想1得到的三棱锥


(2)不考虑其他因素,老王的设想1和设想2分别得到的几何体哪个容积更大?说明理由.
如图,在三棱柱
中,
、
分别是
、
的中点.

(1)设棱
的中点为
,证明:
平面
;
(2)若
,
,
,且平面
平面
.
(i)求三棱柱
的体积
;
(ii)求二面角
的余弦值.






(1)设棱




(2)若





(i)求三棱柱


(ii)求二面角

如图,已知正三棱柱ABC=A1B1C1的各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.
(1)当CF=1时,求证:EF⊥A1C;
(2)设二面角C﹣AF﹣E的大小为θ,求tanθ的最小值.
(1)当CF=1时,求证:EF⊥A1C;
(2)设二面角C﹣AF﹣E的大小为θ,求tanθ的最小值.

如图,四棱柱ABCD-
中,地面ABCD为直角梯形,AB∥CD,AB⊥BC,平面ABCD⊥平面AB
,∠BA
=60°,AB=A
=2BC=2CD=2

(1)求证:BC⊥A
;
(2)求二面角D-A
-B的余弦值;
(3)在线段D
上是否存在点M,使得CM∥平面DA
?若存在,求
的值;若不存在,请说明理由.





(1)求证:BC⊥A

(2)求二面角D-A

(3)在线段D



已知长方形
中,
,
,现将长方形沿对角线
折起,使
,得到一个四面体
,如图所示.

(1)试问:在折叠的过程中,异面直线
与
能否垂直?若能垂直,求出相应的
的值;若不垂直,请说明理由;
(2)当四面体
体积最大时,求二面角
的余弦值.







(1)试问:在折叠的过程中,异面直线



(2)当四面体

