- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断面面是否垂直
- + 证明面面垂直
- 补全面面垂直的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,四棱锥
中,四边形
为矩形,
为等腰三角形,
,平面
平面
,且
,
,
、
分别为
和
的中点.
(
)证明:
平面
.
(
)证明:平面
平面
.
(
)当
上的动点
满足什么条件时,使三棱锥
的体积与四棱锥
体积的比值为
,并证明你的结论.












(



(



(







如图,在四棱锥
中,底面
是边长为
的正方形,侧面

底面
,且
,
、
分别为
、
的中点.

(1)求证:
平面
;
(2)求证:面
平面
;
(3)在线段
上是否存在点
,使得二面角
的余弦值为
?说明理由.





底面







(1)求证:


(2)求证:面



(3)在线段




如图,在四棱锥
中,底面
是菱形,
平面
,
是棱
上的一个动点.
(Ⅰ)若
为
的中点,求证:
平面
;
(Ⅱ)求证:平面
平面
;
(Ⅲ)若三棱锥
的体积是四棱锥
体积的
,求
的值.






(Ⅰ)若




(Ⅱ)求证:平面


(Ⅲ)若三棱锥




