- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断面面是否垂直
- + 证明面面垂直
- 补全面面垂直的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图甲,在直角梯形
中,
,
,
,
是
的中点. 现沿
把平面
折起,使得
(如图乙所示),
、
分别为
、
边的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:平面
平面
;
(Ⅲ)在
上找一点
,使得
平面
.













(Ⅰ)求证:


(Ⅱ)求证:平面


(Ⅲ)在





如图,四棱锥P—ABCD中,ABCD为矩形,△PAD为等腰直角三角形,∠APD=90°,平面PAD⊥平面ABCD,E、F分别为PC和BD的中点.
(1)证明:EF∥平面PAD;
(2)证明:平面PDC⊥平面PAD.
(1)证明:EF∥平面PAD;
(2)证明:平面PDC⊥平面PAD.

AA1=4,AB=2,点E在棱CC1上,点F是棱C1D1的中点.

(1)若点E是棱CC1的中点,求证:EF//平面A1BD;
(2)试确定点E的位置,使得面A1BD
面BDE,并说明理由.

(1)若点E是棱CC1的中点,求证:EF//平面A1BD;
(2)试确定点E的位置,使得面A1BD

如图所示,在四棱锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点.
(Ⅰ)求证:BE∥平面PDF;
(Ⅱ)求证:平面PDF⊥平面PAB;
(Ⅲ)求平面PAB与平面PCD所成的锐二面角的大小.
(Ⅰ)求证:BE∥平面PDF;
(Ⅱ)求证:平面PDF⊥平面PAB;
(Ⅲ)求平面PAB与平面PCD所成的锐二面角的大小.

如图,在底面为矩形的四棱锥
中,
平面
,
,
是
的中点.
(1)求证:
//平面
;
(2)求证:
;
(3)是否存在正实数
使得平面
平面
?若存在,求出
的值;若不存在,请说明理由.







(1)求证:


(2)求证:

(3)是否存在正实数






如图,ABCD是正方形,O是正方形的中心, PO
底面ABCD,E是PC的中点.
求证:(1)PA∥平面BDE;
(2)平面PAC
平面BDE

求证:(1)PA∥平面BDE;
(2)平面PAC

