- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 点面距离的概念及性质
- + 求点面距离
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在三棱柱
中,已知
,
,
在底面
的投影是线段
的中点
.

(1)求点
到平面
的距离;
(2)求直线
与平面
所成角的正弦值;
(3)若
,
分别为直线
,
上动点,求
的最小值.








(1)求点


(2)求直线


(3)若





三棱锥S—ABC中,SA⊥底面ABC,SA=4,AB=3,G为底面三角形ABC的重心,∠ABC=90°,则点G到面SBC的距离等于___________ ;
直三棱柱ABC﹣A1B1C1的底面是等腰直角三角形,AB=AC=2,四棱锥C﹣ABB1A1的体积等于4.

(1)求AA1的值;
(2)求C1到平面A1B1C的距离.

(1)求AA1的值;
(2)求C1到平面A1B1C的距离.
如图示,已知平行四边形
和矩形
所在平面互相垂直,
,
,
,
,
是线段
的中点.
(1)求证:
;
(2)设二面角
的大小为
,求
的值;
(3)设点
为一动点,若点
从
出发,沿棱按照
的路线运动到点
,求这一过程中形成的三棱锥
的体积的最小值.








(1)求证:

(2)设二面角



(3)设点






