- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 点面距离的概念及性质
- + 求点面距离
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图(1)
中,
,
,
,
分别是
与
的中点,将
沿
折起连接
与
得到四棱锥
(如图(2)),
为线段
的中点.

(1)求证:
平面
;
(2)当四棱锥
体积最大时,求
与平面
的距离.















(1)求证:


(2)当四棱锥



如图,在四棱锥
中,底面
是正方形,对角线
与
交于点
,侧面
是边长为2的等边三角形,
为
的中点.

(1)证明:
平面
;
(2)若侧面
底面
,求点
到平面
的距离.









(1)证明:


(2)若侧面




已知空间几何体
中,
与
均为边长为
的等边三角形,
为腰长为
的等腰三角形,平面
平面
,平面
平面
.

(1)试在平面
内作一条直线,使直线上任意一点
与
的连线
均与平面
平行,并给出详细证明
(2)求点
到平面
的距离











(1)试在平面





(2)求点

