- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 线面平行的判定
- 面面平行的判定
- + 线面平行的性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在底边为等边三角形的斜三棱柱ABC﹣A1B1C1中,AA1
AB,四边形B1C1CB为矩形,过A1C作与直线BC1平行的平面A1CD交AB于点D.
(Ⅰ)证明:CD⊥AB;
(Ⅱ)若AA1与底面A1B1C1所成角为60°,求二面角B﹣A1C﹣C1的余弦值.


(Ⅰ)证明:CD⊥AB;
(Ⅱ)若AA1与底面A1B1C1所成角为60°,求二面角B﹣A1C﹣C1的余弦值.

如图,在多面体
中,平面
平面
,四边形
为正方形,四边形
为梯形,且
,
,
.

(Ⅰ)求证:
平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)在线段
上是否存在点
,使得
平面
?若存在,求出
的值;若不存在,请说明理由.









(Ⅰ)求证:


(Ⅱ)求证:


(Ⅲ)在线段





在四棱锥P-ABCD中,ABCD为梯形,AB//CD,BC⊥AB,AB=2
,BC=
,CD=PC=
.

(I)点E在线段PB上,满足CE//平面PAD,求
的值.
(II)已知AC与BD的交点为M,若PM=1,且平面PAC⊥平面ABCD,求二面角P-BC-M平面角的余弦值.




(I)点E在线段PB上,满足CE//平面PAD,求

(II)已知AC与BD的交点为M,若PM=1,且平面PAC⊥平面ABCD,求二面角P-BC-M平面角的余弦值.