- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 线面平行的判定
- 面面平行的判定
- + 线面平行的性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在四棱锥
中,
为梯形,
,
,
,
,
,
.

(1)在线段
上有一个动点
,满足
且
平面
,求实数
的值;
(2)已知
与
的交点为
,若
,且平面
,求二面角
平面角的余弦值.









(1)在线段






(2)已知






已知如图,斜三棱柱ABC-A1B1C1中,点D、D1分别为AC、A1C1上的点.
(1)当
等于何值时,BC1∥平面AB1D1?
(2)若平面BC1D∥平面AB1D1,求
的值.
(1)当

(2)若平面BC1D∥平面AB1D1,求


如图,在三棱台ABC﹣A1B1C1中,底面ABC是边长为2的等边三角形,上、下底面的面积之比为1:4,侧面A1ABB1⊥底面ABC,并且A1A=A1B1,∠AA1B=90°.
(1)平面A1C1B∩平面ABC=l,证明:A1C1∥l;
(2)求平面A1C1B与平面ABC所成二面角的正弦值.
(1)平面A1C1B∩平面ABC=l,证明:A1C1∥l;
(2)求平面A1C1B与平面ABC所成二面角的正弦值.

如图所示,在四棱锥
中,底面ABCD是正方形,AC与BD交于点O,
底面ABCD,F为BE的中点,
.

(1)求证:
平面ACF;
(2)求BE与平面ACE的所成角的正切值;
(3)在线段EO上是否存在点G,使CG
平面BDE ?若存在,求出EG:EO的值,若不存在,请说明理由.




(1)求证:

(2)求BE与平面ACE的所成角的正切值;
(3)在线段EO上是否存在点G,使CG

如图,在平行四边形
中,
,
.现沿对角线
将
折起,使点
到达点
.点
、
分别在
、
上,且
、
、
、
四点共面.

(1)求证:
;
(2)若平面
平面
,平面
与平面
夹角为
,求
与平面
所成角的正弦值.
















(1)求证:

(2)若平面







如图所示,在三棱锥
中,
与
都是边长为2的等边三角形,
是侧棱
的中点,过点
作平行于
、
的平面分别交棱
、
、
于点
、
、
.

(1)证明:四边形
为矩形;
(2)若平面
平面
,求二面角
的余弦值.















(1)证明:四边形

(2)若平面


