- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间点、直线、平面之间的位置关系
- + 直线、平面平行的判定与性质
- 线面平行的判定
- 面面平行的判定
- 线面平行的性质
- 直线、平面垂直的判定与性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在四棱锥O﹣ABCD中,底面ABCD四边长为1的菱形,∠ABC=
,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.

(1)证明:直线MN∥平面OCD;
(2)求异面直线AB与MD所成角的大小;
(3)求点B到平面OCD的距离.


(1)证明:直线MN∥平面OCD;
(2)求异面直线AB与MD所成角的大小;
(3)求点B到平面OCD的距离.
如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB、PC的中点.

(1)求证:EF∥平面PAD;
(2)求证:EF⊥CD;

(1)求证:EF∥平面PAD;
(2)求证:EF⊥CD;
如图,四边形
是边长为2的菱形,且
.四边形
是平行四边形,且
.点
,
在平面
内的射影为
,
,且
在
上,四棱锥
的体积为2.

(1)求证:平面
平面
;
(2)在
上是否存在点
,使
平面
?如果存在,是确定点
的位置,如果不存在,请说明理由.













(1)求证:平面


(2)在





如图,在底面是菱形的四棱锥
中,
,
,
,点
在线段
上,且
.

(1)求证:
平面
;
(2)求二面角
的正切值;
(3)在棱
上是否存在一点
,使得
平面
?证明你的结论.








(1)求证:


(2)求二面角

(3)在棱




对于两条不同的直线m,n和两个不同的平面
,
,以下结论正确的是( )


A.若![]() ![]() ![]() ![]() |
B.若![]() ![]() ![]() ![]() |
C.若![]() ![]() ![]() ![]() |
D.若,![]() ![]() ![]() ![]() |