- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间点、直线、平面之间的位置关系
- + 直线、平面平行的判定与性质
- 线面平行的判定
- 面面平行的判定
- 线面平行的性质
- 直线、平面垂直的判定与性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
己知四棱锥
中,
平面
,底面
是菱形,且
.
,
、
的中点分别为
,
.
(Ⅰ)求证
.
(Ⅱ)求二面角
的余弦值.
(Ⅲ)在线段
上是否存在一点
,使得
平行于平面
?若存在,指出
在
上的位置并给予证明,若不存在,请说明理由.











(Ⅰ)求证

(Ⅱ)求二面角

(Ⅲ)在线段







已知两条不同直线
,两个不同平面
,给出下列命题:
①若
垂直于
内的两条相交直线,则
;
②若
,则
平行于
内的所有直线;
③若
且
,则
;④若
,则
;
⑤若
且
,则
.其中正确命题的序号是____________ .


①若



②若



③若





⑤若


