- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 异面直线所成的角的概念及辨析
- + 证明异面直线垂直
- 求异面直线所成的角
- 由异面直线所成的角求其他量
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,矩形
中,
为边
的中点,将
直线
翻转成
平面
),若
分别为线段
的中点,则在
翻转过程中,下列说法错误的是( )












A.与平面![]() |
B.异面直线![]() ![]() |
C.一定存在某个位置,使![]() |
D.三棱锥![]() ![]() |
如图,点E为正方形ABCD边CD上异于点C,D的动点,将△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,则下列说法中正确的有( )

①存在点E使得直线SA⊥平面SBC;
②平面SBC内存在直线与SA平行
③平面ABCE内存在直线与平面SAE平行;
④存在点E使得SE⊥BA.
A.1个

①存在点E使得直线SA⊥平面SBC;
②平面SBC内存在直线与SA平行
③平面ABCE内存在直线与平面SAE平行;
④存在点E使得SE⊥BA.
A.1个
A.2个 | B.3个 | C.4个 |
如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.

(1)求PB和平面PAD所成的角的大小;
(2)证明AE⊥平面PCD.

(1)求PB和平面PAD所成的角的大小;
(2)证明AE⊥平面PCD.