刷题首页
题库
高中数学
题干
如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(1)求PB和平面PAD所成的角的大小;
(2)证明AE⊥平面PCD.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-27 09:44:38
答案(点此获取答案解析)
同类题1
如图1,在直角梯形ADCE中,AD∥EC,EC=2BC,∠ADC=90°,AB⊥EC,点F为线段BC上的一点.将△ABE沿AB折到△ABE
1
的位置,使E
1
F⊥BC,如图2.
(Ⅰ)求证:AB∥平面CDE
1
;
(Ⅱ)求证:E
1
F⊥AC;
(Ⅲ)在E
1
D上是否存在一点M,使E
1
C⊥平面ABM.说明理由.
同类题2
如图所示,在直三棱柱ABC-A1B1C1中,BC=AC,AC
1
⊥A
1
B,M,N分别是A
1
B
1
,AB的中点,给出下列结论:①C
1
M⊥平面A
1
ABB
1
,
②A
1
B⊥NB
1
,③平面AMC
1
//平面CNB
1
, 其中正确结论的个数为 ( )
A.0
B.1
C.2
D.3
同类题3
(本小题满分8分)如图,在四棱锥P−ABCD中,PD⊥底面ABCD,底面ABCD为平行四边形,∠ADB=90°,AB=2AD.
(Ⅰ)求证:平面PAD⊥平面PBD;
(Ⅱ)若PD=AD=1,
,求二面角P−AD−E的余弦值.
同类题4
给出下列关于互不重合的三条直线
和两个平面
、
的四个命题:
①若
,点
,则
与
不共面;
②若
、
是异面直线,
,
,且
,
,则
;
③若
,则
;
④若
,则
,
其中为真命题的是( )
A.①③④
B.②③④
C.①②④
D.①②③
同类题5
如图,在四棱锥
中,底面
为直角梯形,
,
底面
,
,
,
为
的中点,
为棱
的中点.
(I)证明:
平面
;
(II)已知
,求
点到平面
的距离.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
空间点、直线、平面之间的位置关系
异面直线所成的角
证明异面直线垂直
求线面角