- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间几何体
- + 点、直线、平面之间的位置关系
- 空间点、直线、平面之间的位置关系
- 直线、平面平行的判定与性质
- 直线、平面垂直的判定与性质
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E是线段AB中点.

(1)证明:D1E⊥CE;
(2)求二面角D1﹣EC﹣D的大小的余弦值;
(3)求A点到平面CD1E的距离.

(1)证明:D1E⊥CE;
(2)求二面角D1﹣EC﹣D的大小的余弦值;
(3)求A点到平面CD1E的距离.
四棱锥
中,
平面
,底面四边形
为直角梯形,
,
,
,
.

(Ⅰ)求证:平面
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)
为
中点,在四边形
所在的平面内是否存在一点
,使得
平面
,若存在,求三角形
的面积;若不存在,请说明理由.









(Ⅰ)求证:平面


(Ⅱ)求二面角

(Ⅲ)







在我国古代数学名著《九章算术》中,将四个面都是直角三角形的四面体称为“鳖臑”,在鳖臑
中,
平面
,且
为
的中点,则二面角
的正弦值为( )






A.![]() | B.![]() | C.![]() | D.![]() |
如图,点
为正方形边
上异于点
的动点,将
沿
翻折成
,使得平面
平面
,则下列说法中正确的是__________.(填序号)

(1)在平面
内存在直线与
平行;
(2)在平面
内存在直线与
垂直
(3)存在点
使得直线
平面
(4)平面
内存在直线与平面
平行.
(5)存在点
使得直线
平面









(1)在平面


(2)在平面


(3)存在点



(4)平面


(5)存在点



如图所示1,已知四边形ABCD满足
,
,E是BC的中点.将
沿着AE翻折成
,使平面
平面AECD,F为CD的中点,如图所示2.

(1)求证:
平面
;
(2)求AE到平面
的距离.






(1)求证:


(2)求AE到平面
