- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 球的体积的有关计算
- 球的表面积的有关计算
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.如图,半球内有一内接正四棱锥
,该四棱锥的体积为
,现在半球内任取一点,则该点在正四棱锥内的概率为( )




A.![]() | B.![]() | C.![]() | D.![]() |
如图,半径为6的球的两个内接圆锥有公共的底面,若两个圆锥的体积之和为球的体积的
,则这两个圆锥高之差的绝对值为( )



A.2 | B.4 | C.6 | D.8 |
古希腊数学家阿基米德的墓碑上,刻着一个“圆柱容球”的几何图形,就是圆柱容器里放了一个球,这个球顶天立地,四周碰边(如图).若记这个球的表面积和体积分别为
和
,圆柱的表面积和体积分别为
和
,则( )





A.![]() | B.![]() |
C.![]() | D.![]() ![]() |