- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- 等比数列
- 数列求和
- + 数列的综合应用
- 数列-单利
- 数列-复利
- 数列-分期付款
- 数列-产值增长
- 数列-养老保险
- 数列-浓度匹配
- 数列-其他模型
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于数列
,定义“
变换”:
将数列
变换成数列
,其中
,且
,这种“
变换”记作
.继续对数列
进行“
变换”,得到数列
,依此类推,当得到的数列各项均为
时变换结束.
(1)试问
和
经过不断的“
变换”能否结束?若能,请依次写出经过“
变换”得到的各数列;若不能,说明理由;
(2)求
经过有限次“
变换”后能够结束的充要条件;
(3)证明:
一定能经过有限次“
变换”后结束.













(1)试问




(2)求


(3)证明:


(题文)对于数列
,定义“
变换”:
将数列
变换成数列
,其中
,且
,这种“
变换”记作
.继续对数列
进行“
变换”,得到数列
,依此类推,当得到的数列各项均为
时变换结束.
(1)试问
和
经过不断的“
变换”能否结束?若能,请依次写出经过“
变换”得到的各数列;若不能,说明理由;
(2)求
经过有限次“
变换”后能够结束的充要条件;
(3)证明:
一定能经过有限次“
变换”后结束.













(1)试问




(2)求


(3)证明:


已知数列
满足:所有的奇数项
构成以1为首项,1为公差的等差数列;所有的偶数项
构成以2为首项,3为公差的等差数列,则
()




A.200 | B.201 | C.400 | D.402 |
已知数列{an}的各项均为正数,记A(n)=a1+a2+……+an,B(n)=a2+a3+……+an+1,C(n)=a3+a4+……+an+2,n=1,2,……
(1)若a1=1,a2=5,且对任意n∈N﹡,三个数A(n),B(n),C(n)组成等差数列,求数列{an}的通项公式.
(2)证明:数列{an}是公比为q的等比数列的充分必要条件是:对任意
,三个数A(n),B(n),C(n)组成公比为q的等比数列.
(1)若a1=1,a2=5,且对任意n∈N﹡,三个数A(n),B(n),C(n)组成等差数列,求数列{an}的通项公式.
(2)证明:数列{an}是公比为q的等比数列的充分必要条件是:对任意
