- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 倒序相加法求和
- 错位相减法求和
- 裂项相消法求和
- + 分组(并项)法求和
- 数列求和的其他方法
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知等比数列
的各项均为正数,
成等差数列,且满足
,数列
的前
项和
,
,且
.
(1)求数列
和
的通项公式;
(2)设
,求数列
的前
项和
.
(3)设
,
,
的前
项和
,求证:
.








(1)求数列


(2)设




(3)设






已知等比数列{an}的前n项和为Sn,公比q>0,S2=2a2-2,S3=a4-2,数列{an}满足a2=4b1,nbn+1-(n+1)bn=n2+n,(n∈N*).
(1)求数列{an}的通项公式;
(2)证明数列{
}为等差数列;
(3)设数列{cn}的通项公式为:Cn=
,其前n项和为Tn,求T2n.
(1)求数列{an}的通项公式;
(2)证明数列{

(3)设数列{cn}的通项公式为:Cn=

已知数列
的前
项和为
,
满足
,且
.正项数列
满足
,其前7项和为42.
(1)求数列
和
的通项公式;
(2)令
,数列
的前
项和为
,若对任意正整数
,都有
,求实数
的取值范围;
(3)将数列
,
的项按照“当
为奇数时,
放在前面;当
为偶数时,
放在前面”的要求进行排列,得到一个新的数列:
,
,
,
,
,
,
,
,
,
,
,…,求这个新数列的前
项和
.








(1)求数列


(2)令







(3)将数列



















已知等差数列
的公差为d,等比数列
的公比为q,若
,且
,
,
,
成等差数列.
(1)求数列
,
的通项公式;
(2)记
,数列
的前n项和为
,数列
的前n项和为
,求
,
.







(1)求数列


(2)记






