- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 倒序相加法求和
- 错位相减法求和
- 裂项相消法求和
- + 分组(并项)法求和
- 数列求和的其他方法
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
定义:如果一个数列从第二项起,每一项与前一项的差构成一个等比数列,则称该数列为“等差比”数列.已知“等差比”数列
的前三项分别为
,
,
,则数列
的前
项和
_____.







设数列
的通项公式为
.数列
定义如下:对于正整数
是使得不等式
成立的所有
中的最小值.
(1)若
,
,求
;
(2)若
,
,求数列
的前
项和公式;
(3)是否存在
和
,使得
?如果存在,求
和
的取值范围;如果不存在,请说明理由.






(1)若



(2)若




(3)是否存在




