- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 倒序相加法求和
- 错位相减法求和
- 裂项相消法求和
- + 分组(并项)法求和
- 数列求和的其他方法
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知等比数列
的公比
,且
,
是
、
的等差中项.
(1)求数列
的通项公式;
(2)试比较
与
的大小,并说明理由;
(3)若数列
满足
,在每两个
与
之间都插入
个2,使得数列
变成了一个新的数列
,试问:是否存在正整数
,使得数列
的前
项和
?如果存在,求出
的值;如果不存在,说明理由.






(1)求数列

(2)试比较


(3)若数列












已知数列
的前
项和为
,且
,
(
).
(1)计算
,
,
,
,并求数列
的通项公式;
(2)若数列
满足
,求证:数列
是等比数列;
(3)由数列
的项组成一个新数列
:
,
,
,
,
,设
为数列
的前
项和,试求
的值.






(1)计算





(2)若数列



(3)由数列











已知数列
满足
,当
时,
,且点
是直线
上的点,则数列
的通项公式为_________;令
,则当k在区间
内时,使y的值为正整数的所有k值之和为__________.









设数列
满足
,其中A,B是两个确定的实数,
(1)若
,求
的前n项和;
(2)证明:
不是等比数列;
(3)若
,数列
中除去开始的两项外,是否还有相等的两项,并证明你的结论.



(1)若


(2)证明:

(3)若

