- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 倒序相加法求和
- 错位相减法求和
- + 裂项相消法求和
- 分组(并项)法求和
- 数列求和的其他方法
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和,已知S3=7,且a1,a2,a3﹣1成等差数列.
(1)求数列{an}的通项公式;
(2)若bn=log4a2n+1,n=1,2,3…,求和:
.
(1)求数列{an}的通项公式;
(2)若bn=log4a2n+1,n=1,2,3…,求和:

已知数列
中,
,
,其前
项和为
,且当
时,
.
(Ⅰ)求证:数列
是等比数列;
(Ⅱ)求数列
的通项公式;
(Ⅲ)令
,记数列
的前
项和为
,证明对于任意的正整数
,都有
成立.







(Ⅰ)求证:数列

(Ⅱ)求数列

(Ⅲ)令






(本小题满分12分)已知在数列
中,
,
,
是函数
的一个极值点.
(1)证明:数列
为等比数列,并求数列
的通项公式
;
(2)是否存在指数函数
,使得对于任意的正整数n有
成立?若存在,求出满足条件的一个
;若不存在,请说明理由.





(1)证明:数列



(2)是否存在指数函数



(本小题满分14分)设数列
的前
项和为
,满足
,
,且
成等比数列.
(1)求
,
,
的值;
(2)令
,求数列
的通项公式;
(3)证明:对一切正整数
,有
.






(1)求



(2)令


(3)证明:对一切正整数


