- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 求等比数列前n项和
- 等比数列前n项和的基本量计算
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
数列1,1+2,1+2+22,1+2+22+23,…,1+2+22+…+2n-1,…前n项和Sn>1020,则n的最小值是( )
A.7 | B.8 | C.9 | D.10 |
某同学利用暑假时间到一家商场勤工俭学,该商场向他提供了三种付酬方案:
第一种,每天支付
元,没有奖金;
第二种,每天的底薪
元,另有奖金.第一天奖金
元,以后每天支付的薪酬中奖金比前一天的奖金多
元;
第三种,每天无底薪,只有奖金.第一天奖金
元,以后每天支付的奖金是前一天的奖金的
倍.
(1)工作
天
,记三种付费方式薪酬总金额依次为
、
、
,写出
、
、
关于
的表达式;
(2)该学生在暑假期间共工作
天,他会选择哪种付酬方式?
第一种,每天支付

第二种,每天的底薪



第三种,每天无底薪,只有奖金.第一天奖金


(1)工作









(2)该学生在暑假期间共工作

抛物线
的准线与
轴交于点
,过点
作直线
交抛物线于
,
两点.
(1)求直线
的斜率的取值范围;
(2)若线段
的垂直平分线交
轴于
,求证:
;
(3)若直线
的斜率依次为
,
,
,…,
,…,线段
的垂直平分线与
轴的交点依次为
,
,
,…,
,…,求
.







(1)求直线

(2)若线段




(3)若直线












已知递增的等差数列{an}的首项a1=1,且a1、a2、a4成等比数列.
(1)求数列{an}的通项公式an;
(2)设数列{cn}对任意n∈N*,都有
+…+
=an+1成立,求c1+c2+…+c2014的值
(3)若bn=
(n∈N*),求证:数列{bn}中的任意一项总可以表示成其他两项之积.
(1)求数列{an}的通项公式an;
(2)设数列{cn}对任意n∈N*,都有


(3)若bn=

某家庭决定要进行一项投资活动,预计每年收益
.该家庭2020年1月1日投人
万元,按照复利(复利是指在每经过一个计息期后,都将所得利息加人本金,以计算下期的利息)计算,到2030年1月1日,该家庭在此项投资活动的资产总额大约为( )参考数据:



A.![]() | B.![]() | C.![]() | D.![]() |