- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 写出等比数列的通项公式
- 由定义判定等比数列
- 等比数列通项公式的基本量计算
- 由递推关系证明等比数列
- 验证是否为等比数列中的项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知等比数列
的前n项和为
,且当
时,
是
与2m的等差中项
为实数
.
(1)求m的值及数列
的通项公式;
(2)令
,是否存在正整数k,使得
对任意正整数n均成立?若存在,求出k的最大值;若不存在,说明理由.







(1)求m的值及数列

(2)令


已知数列
,若
为等比数列,则称
具有性质P.
(1)若数列
具有性质P,且
,求
、
的值;
(2)若
,求证:数列
具有性质P;
(3)设
,数列
具有性质P,其中

,若
,求正整数n的取值范围.




(1)若数列





(2)若


(3)设






已知数列
、
,其中,
,数列{bn}满足b1=2,bn+1=2bn.
(1)求数列
、
的通项公式;
(2)是否存在自然数
,使得对于任意
,
,有
恒成立?若存在,求出
的最小值;
(3)若数列
满足
,求数列
的前
项和
.



(1)求数列


(2)是否存在自然数





(3)若数列





