- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 写出等比数列的通项公式
- 由定义判定等比数列
- 等比数列通项公式的基本量计算
- 由递推关系证明等比数列
- 验证是否为等比数列中的项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设函数
,过点
作
轴的垂线
交函数
图象于点
,以
为切点作函数
图象的切线交
轴于点
,再过
作
轴的垂线
交函数
图象于点
,
,以此类推得点
,记
的横坐标为
,
.
(1)证明数列
为等比数列并求出通项公式;
(2)设直线
与函数
的图象相交于点
,记
(其中
为坐标原点),求数列
的前
项和
.




















(1)证明数列

(2)设直线








《九章算术》中有一个“两鼠穿墙”的问题:“今有垣厚五尺,两鼠对穿.大鼠日一尺,小鼠亦日一尺.大鼠日自倍,小鼠日自半.问几何日相逢?各穿几何?”其大意为:“今有一堵墙厚五尺,两只老鼠从墙的两边沿一条直线相对打洞穿墙,大老鼠第一天打洞1尺,以后每天是前一天的2倍;小老鼠第一天也打洞1尺,以后每天是前一天的
.问大、小老鼠几天后相遇?各自打洞几尺?”如果墙足够厚,Sn为前n天两只老鼠打洞长度之和,则Sn=_____尺.

已知各项均为正数的等比数列
满足
,
,数列
的前n项和为Sn,且
,
,
N
.
(1)求数列
的通项公式;
(2)证明数列
是等差数列,并求数列
的前n项和Tn.








(1)求数列

(2)证明数列


定义
为不超过
的最大整数,例如
,
.已知
是等比数列,若
,且前
项和为
.
(1)若不等式
对任意的
恒成立,求实数
的取值范围;
(2)求
的通项公式;
(3)若
,求数列
的前
项和
.








(1)若不等式



(2)求

(3)若



