- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 写出等比数列的通项公式
- 由定义判定等比数列
- 等比数列通项公式的基本量计算
- 由递推关系证明等比数列
- 验证是否为等比数列中的项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列
、
满足

,其中
数列
的前
项和,
(1)若数列
是首项为
.公比为
的等比数列,求数列
的通项公式;
(2)若
,
求证:数列
满足

,并写出
的通项公式;
(3)在(2)的条件下,设
,求证
中任意一项总可以表示成该数列其它两项之积.








(1)若数列




(2)若







(3)在(2)的条件下,设


定义:如果一个数列从第二项起,每一项与前一项的差构成一个等比数列,则称该数列为“等差比”数列.已知“等差比”数列
的前三项分别为
,
,
,则数列
的前
项和
_____.







已知
,
为常数,且为正整数,
为质数且大于2,无穷数列
的各项均为正整数,其前n项和为
,对任意正整数
,数列
中任意两不同项的和构成集合A.
(1)证明无穷数列
为等比数列,并求
的值;
(2)如果
,求
的值;
(3)当
,设集合
中元素的个数记为
,求
.








(1)证明无穷数列


(2)如果


(3)当




设数列
共有
项,记该数列前
项
,
,…,
中的最大项为
,该数列后
项
,
,…,
中的最小项为
,
(
1,2,3,…,
).
(1)若数列
的通项公式为
,求数列
的通项公式;
(2)若数列
是单调数列,且满足
,
,求数列
的通项公式;
(3)试构造一个数列
,满足
,其中
是公差不为零的等差数列,
是等比数列,使得对于任意给定的正整数
,数列
都是单调递增的,并说明理由.















(1)若数列



(2)若数列




(3)试构造一个数列





