- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 写出等比数列的通项公式
- 由定义判定等比数列
- 等比数列通项公式的基本量计算
- 由递推关系证明等比数列
- 验证是否为等比数列中的项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列{an}为等差数列,a1=1,前n项和为Sn,数列{bn}为等比数列,b1>1,公比为2,且b2S3=54,b3+S2=16.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)设数列{cn}满足cn=an+bn,求数列{cn}的前n项和Tn.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)设数列{cn}满足cn=an+bn,求数列{cn}的前n项和Tn.
已知等比数列
的首项
,数列
前
项和记为
,前
项积记为
.
(1) 若
,求等比数列
的公比
;
(2) 在(1)的条件下,判断
与
的大小;并求
为何值时,
取得最大值;
(3) 在(1)的条件下,证明:若数列
中的任意相邻三项按从小到大排列,则总可以使其成等差数列;若所有这些等差数列的公差按从小到大的顺序依次记为
,则数列
为等比数列.







(1) 若



(2) 在(1)的条件下,判断




(3) 在(1)的条件下,证明:若数列



对于数列
,称
(其中
)为数列
的前k项“波动均值”.若对任意的
,都有
,则称数列
为“趋稳数列”.
(1)若数列1,
,2为“趋稳数列”,求
的取值范围;
(2)若各项均为正数的等比数列
的公比
,求证:
是“趋稳数列”;
(3)已知数列
的首项为1,各项均为整数,前
项的和为
. 且对任意
,都有
, 试计算:
(
).







(1)若数列1,


(2)若各项均为正数的等比数列



(3)已知数列







设定义在
上的函数
满足:对任意的
,当
时,都有
.
(1)若
,求实数
的取值范围;
(2)若
为周期函数,证明:
是常值函数;
(3)若
①记
,求数列
的通项公式;
②求
的值.





(1)若


(2)若


(3)若

①记


②求
