- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 根据数列递推公式写出数列的项
- 由递推关系式求通项公式
- + 由递推数列研究数列的有关性质
- 求递推关系式
- 递推数列的实际应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,直角坐标平面被两坐标轴和两条直线
等分成八个区域(不含边界),已知数列
,
表示数列
的前
项和,对任意的正整数
,均有
,当
时,点
( )











A.只能在区域② |
B.只能在区域②和④ |
C.在区域①②③④均会出现 |
D.当![]() ![]() ![]() ![]() |
对于无穷数列
,若对任意
,满足
且
(
是与
无关的常数),则称数列
为
数列.
(1)若
(
),判断数列
是否为
数列,说明理由;
(2)设
,求证:数列
是
数列,并求常数
的取值范围;
(3)设数列
(
,
),问数列
是否为
数列?说明理由.








(1)若




(2)设




(3)设数列





已知数列
、
、
,对于给定的正整数
,记
,
.若对任意的正整数
满足:
,且
是等差数列,则称数列
为“
”数列.
(1)若数列
的前
项和为
,证明:
为
数列;
(2)若数列
为
数列,且
,求数列
的通项公式;
(3)若数列
为
数列,证明:
是等差数列 .












(1)若数列





(2)若数列




(3)若数列


