- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 根据数列递推公式写出数列的项
- 由递推关系式求通项公式
- + 由递推数列研究数列的有关性质
- 求递推关系式
- 递推数列的实际应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
无穷正实数数列
具有以下性质
(1)求证:对具有上述性质的任一数列,总能找到一个正整数n使下面不等式恒成立
(2)寻一个满足上述条件的数列,使下面不等式对任一正整数n均成立


(1)求证:对具有上述性质的任一数列,总能找到一个正整数n使下面不等式恒成立

(2)寻一个满足上述条件的数列,使下面不等式对任一正整数n均成立

在数列
中,如果对任意
,都有
(
为常数),则称数列
为比等差数列,
称为比公差,现给出以下命题:
①若数列
满足
,则该数列不是比等差数列;
②若数列满足
,则该数列是比等差数列,且比公差
;
③等比数列一定是比等差数列,等差数列一定不是比等差数列;
④若
是等差数列,
是等比数列,则数列
是比等差数列。
其中所有正确的序号是_________;






①若数列


②若数列满足


③等比数列一定是比等差数列,等差数列一定不是比等差数列;
④若



其中所有正确的序号是_________;