- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 根据数列递推公式写出数列的项
- 由递推关系式求通项公式
- + 由递推数列研究数列的有关性质
- 求递推关系式
- 递推数列的实际应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
“斐波那契数列”由十三世纪意大利数学家列昂纳多·斐波那契发现,因为斐波那契以兔子繁殖为例子而引入,故又称该数列为“兔子数列”.斐波那契数列
满足

(
,
),记其前n项和为
.设命题
,命题
,则下列命题为真命题的是( )









A.![]() | B.![]() | C.![]() | D.![]() |
设
,若存在常数
,使得对任意
,均有
,则称
为有界集合,同时称
为集合
的上界.
(1)设
、
,试判断
、
是否为有界集合,并说明理由;
(2)已知
,记
(
).若
,
,且
为有界集合,求
的值及
的取值范围;
(3)设
均为正数,将
中的最小数记为
.是否存在正数
,使得
为有界集合
,
均为正数
的上界,若存在,试求
的最小值;若不存在,请说明理由.







(1)设




(2)已知








(3)设









若数列{an}满足:
,且a1=1,则称{an}为一个X数列.对于一个X数列{an},若数列{bn}满足:b1=1,且
,
,则称{bn}为{an}的伴随数列.
(Ⅰ)若X数列{an}中a2=1,a3=0,a4=1,写出其伴随数列{bn}中b2,b3,b4的值;
(Ⅱ)若{an}为一个X数列,{bn}为{an}的伴随数列,证明:“{an}为常数列”是“{bn}为等比数列”的充要条件.



(Ⅰ)若X数列{an}中a2=1,a3=0,a4=1,写出其伴随数列{bn}中b2,b3,b4的值;
(Ⅱ)若{an}为一个X数列,{bn}为{an}的伴随数列,证明:“{an}为常数列”是“{bn}为等比数列”的充要条件.