- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 根据数列递推公式写出数列的项
- 由递推关系式求通项公式
- + 由递推数列研究数列的有关性质
- 求递推关系式
- 递推数列的实际应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于数列
,把
作为新数列
的第一项,把
或
(
)作为新数列
的第
项,数列
称为数列
的一个生成数列.例如,数列
的一个生成数列是
.已知数列
为数列
的生成数列,
为数列
的前
项和.
(1)写出
的所有可能值;
(2)若生成数列
满足
,求数列
的通项公式;
(3)证明:对于给定的
,
的所有可能值组成的集合为
.

















(1)写出

(2)若生成数列



(3)证明:对于给定的



已知数列
是无穷数列,其前n项
,
,
中的最大项记为
,第n项之后的所有项
,
,
,
中的最小项记为
数列
满足
.
(1)若
,求
的通项公式
;
(2)若
,
,求数列
的通项公式
(3)判断命题“
是常数列的充分不必要条件是
为递增的等差数列”的真假,并说明理由.












(1)若



(2)若




(3)判断命题“

