- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念
- 递增数列与递减数列
- 有穷数列和无穷数列
- + 递推数列
- 根据数列递推公式写出数列的项
- 由递推关系式求通项公式
- 由递推数列研究数列的有关性质
- 求递推关系式
- 递推数列的实际应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知等比数列{an}的前n项和为
,正数数列{bn}的首项为c,且满足:
.记数列{bnbn+1}前n项和为Tn.
(Ⅰ)求c的值;
(Ⅱ)求数列{bn}的通项公式;
(Ⅲ)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由.


(Ⅰ)求c的值;
(Ⅱ)求数列{bn}的通项公式;
(Ⅲ)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由.
已知函数
满足
,对任意
恒成立,在数列
中,
,
,对任意
(1)求函数的解析式
(2) 求数列
的通项公式
(3) 若对任意的实数
,总存在自然数
,当
时,
恒成立,求
的最小值.







(1)求函数的解析式
(2) 求数列

(3) 若对任意的实数





已知等差数列{an}的公差大于0,且a3,a5是方程x2﹣14x+45=0的两根,数列{bn}的前n项的和为Sn,且

(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)记cn=an•bn,求数列{cn}的前n项和Tn.
已知等差数列{an}的前n项和为Sn,Sn=kn(n+1)-n(k∈R),公差d为2.
(1)求an与k;
(2)若数列{bn}满足
,
(n≥2),求bn.
(1)求an与k;
(2)若数列{bn}满足


已知数列2010,2011,1,-2010,-2011,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2011项之和
等于____________.
