- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 判断数列的增减性
- + 确定数列中的最大(小)项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知正项数列{an}的前n项和Sn满足2Sn=an2+an-2.
(1)求数列{an}的通项公式;
(2)若bn=
(n∈N*),求数列{bn}的前n项和Tn.
(3)是否存在实数λ使得Tn+2>λ•Sn对n∈N+恒成立,若存在,求实数λ的取值范围,若不存在说明理由.
(1)求数列{an}的通项公式;
(2)若bn=

(3)是否存在实数λ使得Tn+2>λ•Sn对n∈N+恒成立,若存在,求实数λ的取值范围,若不存在说明理由.
设数列
为首项是4,公差为1的等差数列,
为数列
的前
项和,且
。
(1)求数列
及
的通项公式
和
;
(2)
问是否存在
使
成立?若存在,求出
,若不存在,说明理由;
(3)对任意的正数
,不等式
恒成立,求正数
的取值范围。





(1)求数列




(2)




(3)对任意的正数



已知数列
与
满足
.
(1)若
,求数列
的通项公式;
(2)若
且数列
为公比不为1的等比数列,求q的值,使数列
也是等比数列;
(3)若
且
,数列
有最大值M与最小值
,求
的取值范围.



(1)若


(2)若



(3)若




