- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 判断数列的增减性
- + 确定数列中的最大(小)项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列
满足:
(1) 证明:数列
是等比数列;
(2) 求使不等式
成立的所有正整数m、n的值;
(3) 如果常数0 < t < 3,对于任意的正整数k,都有
成立,求t的取值范围.


(1) 证明:数列

(2) 求使不等式

(3) 如果常数0 < t < 3,对于任意的正整数k,都有

若无穷数列
满足:
是正实数,当
时,
,则称
是“
-数列”.已知数列
是“
-数列”.
(Ⅰ)若
,写出
的所有可能值;
(Ⅱ)证明:
是等差数列当且仅当
单调递减;
(Ⅲ)若存在正整数
,对任意正整数
,都有
,证明:
是数列
的最大项.








(Ⅰ)若


(Ⅱ)证明:


(Ⅲ)若存在正整数





已知数列
的前
项和为
,且
(1)求数列
的通项公式;
(2)设
,是否存在最大的正整数k,使得对于任意的正整数n,有
恒成立?若存在,求出k的值;若不存在,说明理由.




(1)求数列

(2)设

