- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 判断数列的增减性
- + 确定数列中的最大(小)项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知等差数列{an}的首项a1≠0,前n项和为Sn,且S4+a2=2S3;等比数列{bn}满足b1=a2,b2=a4.
(1)求证:数列{bn}中的每一项都是数列{an}中的项;
(2)若a1=2,设cn=,求数列{cn}的前n项和Tn;
(3)在(2)的条件下,若有f(n)=log3Tn,求f(1)+f(2)+…+f(n)的最大值.
对于数列
,设
表示数列
前
项
,
,
,
中的最大项.数列
满足:
.
(
)若
,求
的前
项和.
(
)设数列
为等差数列,证明:
或者
(
为常数),
,
,
,
.
(
)设数列
为等差数列,公差为
,且
.
记
,
求证:数列
是等差数列.










(




(









(




记

求证:数列

设数列{an}满足:①a1=1;②所有项an∈N*;③1=a1<a2<…<an<an+1<….设集合Am={n|an≤m,m∈N*),将集合Am中的元素的最大值记为bm,即bm是数列{an}中满足不等式an≤m的所有项的项数的最大值.我们称数列{bn}为数列{an}的伴随数列.
例如,数列1,3,5的伴随数列为1,1,2,2,3.
(I)若数列{an}的伴随数列为1,1,2,2,2,3,3,3,3……,请写出数列{an};
(II)设an=4n-1,求数列{an}的伴随数列{bn}的前50项之和;
(III)若数列{an}的前n项和(其中c为常数),求数列{an}的伴随数列{bm}的前m项和Tm.
已知下列四个命题:
①等差数列一定是单调数列;
②等差数列的前
项和构成的数列一定不是单调数列;
③已知等比数列
的公比为
,则“
是单调递减数列”的充要条件是“
”;
④记等差数列的前
项和为
,若
,
,则数列
的最大值一定在
处达到.
其中正确的命题有___________.(填写所有正确的命题的序号)
①等差数列一定是单调数列;
②等差数列的前

③已知等比数列




④记等差数列的前






其中正确的命题有___________.(填写所有正确的命题的序号)
已知数列
满足a1=m,an+1=
(k∈N*,r∈R),其前n项和为
.
(1)当m与r满足什么关系时,对任意的n∈N*,数列{an}都满足an+2=an?
(2)对任意实数m,r,是否存在实数p与q,使得{a2n+1+p}与{a2n+q}是同一个等比数列.若存在,请求出p,q满足的条件;若不存在,请说明理由;
(3)当m=r=1时,若对任意的n∈N*,都有Sn≥λan,求实数λ的最大值.



(1)当m与r满足什么关系时,对任意的n∈N*,数列{an}都满足an+2=an?
(2)对任意实数m,r,是否存在实数p与q,使得{a2n+1+p}与{a2n+q}是同一个等比数列.若存在,请求出p,q满足的条件;若不存在,请说明理由;
(3)当m=r=1时,若对任意的n∈N*,都有Sn≥λan,求实数λ的最大值.