- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念
- + 递增数列与递减数列
- 判断数列的增减性
- 确定数列中的最大(小)项
- 有穷数列和无穷数列
- 递推数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于数列
,设
表示数列
前
项
,
,
,
中的最大项.数列
满足:
.
(
)若
,求
的前
项和.
(
)设数列
为等差数列,证明:
或者
(
为常数),
,
,
,
.
(
)设数列
为等差数列,公差为
,且
.
记
,
求证:数列
是等差数列.










(




(









(




记

求证:数列

定义数列
,如果存在常数
,使对任意正整数
,总有
,那么我们称数列
为“
—摆动数列”.
(
)设
,
,
,判断数列
,
是否为“
—摆动数列”,并说明理由;
(2)已知“
—摆动数列”
满足:
,求常数
的值.






(







(2)已知“




数列
中,如果存在
,使得“
且
”成立(其中
,
),则称
的值为数列
的一个谷值.
①若
,则
的谷值为__________;
②若
,且数列
不存在谷值,则实数
的取值范围是__________.








①若


②若



已知下列四个命题:
①等差数列一定是单调数列;
②等差数列的前
项和构成的数列一定不是单调数列;
③已知等比数列
的公比为
,则“
是单调递减数列”的充要条件是“
”;
④记等差数列的前
项和为
,若
,
,则数列
的最大值一定在
处达到.
其中正确的命题有___________.(填写所有正确的命题的序号)
①等差数列一定是单调数列;
②等差数列的前

③已知等比数列




④记等差数列的前






其中正确的命题有___________.(填写所有正确的命题的序号)
已知数列
满足
,且
.
(1)当
时,写出
的通项公式(直接写出答案,无需过程);
(2)求最小整数
,使得当
时,
是单调递增数列;
(3)是否存在
使得
是等比数列?若存在请求出;若不存在请说明理由.



(1)当


(2)求最小整数



(3)是否存在

