- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 数列的概念与简单表示法
- 数列的概念
- 递增数列与递减数列
- 有穷数列和无穷数列
- 递推数列
- 等差数列
- 等比数列
- 数列求和
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设数列{an}满足:a1=1,an+1=3an,n∈N*.设Sn为数列{bn}的前n项和,已知b1≠0,
2bn–b1=S1•Sn,n∈N*.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设
,求数列{cn}的前n项和Tn;
(Ⅲ)证明:对任意n∈N*且n≥2,有
+
+…+
<
.
2bn–b1=S1•Sn,n∈N*.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设

(Ⅲ)证明:对任意n∈N*且n≥2,有




对于
,定义一个如下数阵:

其中对任意的
,
,当
能整除
时,
;当
不能整除
时,
.设
.
(Ⅰ)当
时,试写出数阵
并计算
;
(Ⅱ)若
表示不超过
的最大整数,求证:
;
(Ⅲ)若
,
,求证:
.


其中对任意的









(Ⅰ)当



(Ⅱ)若




(Ⅲ)若


