- 集合与常用逻辑用语
- 函数与导数
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- + 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
函数f(x)=
(k>0)有且仅有两个不同的零点
,
(
>
),则以下有关两零点关系的结论正确的是





A.sin![]() ![]() ![]() | B.sin![]() ![]() ![]() |
C.sin![]() ![]() ![]() | D.sin![]() ![]() ![]() |
已知函数
.
(1)若
,求证:函数
有且仅有2个零点;
(2)若关于x的不等式
在
上恒成立,其中
是自然对数的底数,求实数m的取值范围.
参考数据:
.

(1)若


(2)若关于x的不等式



参考数据:

已知函数
.
(1)若
,求证:函数
有且仅有2个零点;
(2)若关于x的不等式
在
上恒成立,其中
是自然对数的底数,求实数m的取值范围.
参考数据:
.

(1)若


(2)若关于x的不等式



参考数据:

已知函数
.
(1)若
,求证:函数
有且仅有2个零点;
(2)若关于x的不等式
在
上恒成立,其中
是自然对数的底数,求实数m的取值范围.
参考数据:
.

(1)若


(2)若关于x的不等式



参考数据:

已知函数
.
(1)若
,求证:函数
有且仅有2个零点;
(2)若关于x的不等式
在
上恒成立,其中
是自然对数的底数,求实数m的取值范围.
参考数据:
.

(1)若


(2)若关于x的不等式



参考数据:
