- 集合与常用逻辑用语
- 函数与导数
- 利用导数证明不等式
- + 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,函数
的导函数为
.
⑴ 若直线
与曲线
恒相切于同一定点,求
的方程;
⑵ 若
,求证:当
时,
恒成立;
⑶ 若当
时,
恒成立,求实数
的取值范围.



⑴ 若直线



⑵ 若



⑶ 若当



已知函数f(x)=
-lnx-
.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求证:lnx≥-
(Ⅲ)判断曲线y=f(x)是否位于x轴下方,并说明理由.


(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求证:lnx≥-

(Ⅲ)判断曲线y=f(x)是否位于x轴下方,并说明理由.