- 集合与常用逻辑用语
- 函数与导数
- + 导数在函数中的其他应用
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,
,
是常数.
(1)求函数
的图象在点
处的切线方程;
(2)若函数
图象上的点都在第一象限,试求常数
的取值范围;
(3)证明:
,存在
,使
.



(1)求函数


(2)若函数


(3)证明:



(12分)已知函数
(
是不为零的实数,
为自然对数的底数).
(1)若曲线
与
有公共点,且在它们的某一公共点处有共同的切线,求
的值;
(2)若函数
在区间
内单调递减,求此时
的取值范围.



(1)若曲线



(2)若函数



已知函数f(x)=ax+x2-xlna(a>0,a≠1).
(1)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;
(2)若函数y=|f(x)-t|-1有三个零点,求t的值;
(3)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,试求a的取值范围.
(1)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;
(2)若函数y=|f(x)-t|-1有三个零点,求t的值;
(3)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,试求a的取值范围.
(本小题满分14分)已知函数
.
(1)求函数
的单调区间;
(2)若函数
的图像在点
处的切线的倾斜角为
,对于任意的
,函数
在区间
上总不是单调函数,求
的取值范围;
(3)求证:
.

(1)求函数

(2)若函数







(3)求证:

(本小题满分14分)已知函数
的导函数。
(1)求证:曲线
在点
处的切线不过点
;
(2)若在区间
中存在
,使得
,求
的取值范围;
(3)若
,试证明:对任意
恒成立。

(1)求证:曲线



(2)若在区间




(3)若

