- 集合与常用逻辑用语
- 函数与导数
- + 导数在函数中的其他应用
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分12分)
(Ⅰ)设函数
,证明:当
时,
(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽到的20个号码互不相同的概率为
,证明:
(Ⅰ)设函数
,证明:当
时,
(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽到的20个号码互不相同的概率为
,证明:
(Ⅰ)设函数



(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽到的20个号码互不相同的概率为


(Ⅰ)设函数



(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽到的20个号码互不相同的概率为




(1)若


(2)若


(3)若



其中正确结论的个数是( )
A.3 | B.2 | C.1 | D.0 |
(本小题满分12分)已知函数
.
(I)若函数
在
上是减函数,求实数
的取值范围;
(II)令
,是否存在实数
,使得当
时,函数
的最小值是
,若存在,求出实数
的值,若不存在,说明理由?
(III)当
时,证明:
.

(I)若函数



(II)令






(III)当


如图,P(x0, f (x0))是函数y ="f" (x)图像上一点,曲线y ="f" (x)在点P处的切线交x轴于点A,PB⊥x轴,垂足为B. 若ΔPAB的面积为
,则
与
满足关系式( )





A.![]() ![]() | |
B.![]() | C.![]() |
已知
,则导函数f′(x)是().

A.仅有最小值的奇函数 |
B.既有最大值,又有最小值的偶函数 |
C.仅有最大值的偶函数 |
D.既有最大值,又有最小值的奇函数 |