- 集合与常用逻辑用语
- 函数与导数
- + 导数在函数中的其他应用
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,
(Ⅰ)当
时,求函数
的单调区间;
(Ⅱ)若不等式
对任意的正实数
都成立,求满足条件的实数
的最大整数;
(Ⅲ)当
时,若存在实数
且
,使得
,求证:
.


(Ⅰ)当


(Ⅱ)若不等式



(Ⅲ)当





已知函数
,
.
(1)若
在区间
上不是单调函数,求实数
的范围;
(2)若对任意
,都有
恒成立,求实数
的取值范围;
(3)当
时,设
,对任意给定的正实数
,曲线
上是否存在两点
,
,使得
是以
(
为坐标原点)为直角顶点的直角三角形,而且此三角形斜边中点在
轴上?请说明理由.


(1)若



(2)若对任意



(3)当









